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• Newer climate models have improved simulations of cloud optical depth 15 

• Cloud amount and cloud-top pressure simulations show smaller improvement 16 
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• Newer models have fewer compensating errors in their radiation budget 17 

Abstract 18 

The annual cycle climatology of cloud amount, cloud-top pressure and optical thickness 19 

in two climate model ensembles is compared to satellite observations in order to identify 20 

changes over time in the fidelity of climate model simulations of clouds. In more recent 21 

models, there is widespread reduction of a bias associated with too many highly reflective 22 

clouds, with the best models having eliminated this bias. With increased amounts of 23 

clouds with lesser reflectivity, recent models have reduced the compensating errors that 24 

permit models to simulate the time-mean radiation balance. Errors in cloud amount as a 25 

function of height or climate regime on average show little change or small improvement, 26 

although greater improvement can be found in the models of individual modeling centers. 27 

Index Terms: 3337 Atmospheric Processes: Global climate models (1626, 4928); 3310 28 

Atmospheric Processes: Clouds and cloud feedbacks; 3360 Atmospheric Processes:  29 

Remote sensing (4337) 30 

Keywords: clouds, climate models, satellite simulator 31 

1. Measuring changes in the simulations of global cloudiness over time 32 

The representation of clouds by climate models is a key ongoing challenge in the 33 
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numerical representation of Earth’s climate. Due to their large impact on Earth’s 34 

radiation budget, clouds are important for determining aspects of current climate, such as 35 

surface air temperatures in many regions [Ma et al., 1996; Curry et al., 1996], the 36 

strength and variability of atmospheric circulations [Slingo and Slingo, 1988], and the 37 

magnitude of climate changes that result from perturbations in the chemical composition 38 

of the atmosphere [IPCC, 2007].  While important, the modeling of clouds is very 39 

difficult because most cloud processes happen at scales far smaller than can be resolved 40 

by climate models, and thus their bulk effects must be represented with imperfect 41 

parameterizations. 42 

A large effort of many scientists over several decades and on several fronts has been 43 

undertaken to improve our understanding of cloud processes, often with the ultimate goal 44 

of improving the modeling of clouds in climate models. Observational programs have 45 

been launched to better understand cloud processes [Stephens et al., 2002; Ackerman and 46 

Stokes, 2003], while very high-resolution models capable of resolving cloud processes 47 

provide additional information for the development of cloud parameterizations 48 

unavailable from observations [GEWEX Cloud System Science Team, 1993]. The 49 

community of scientists that work on physical process parameterizations in climate 50 

models has used the information provided by observations and fine-scale models to 51 

develop and implement many new and improved cloud parameterizations. Cloud 52 

simulations in climate models may also be improved indirectly by complementary model 53 

development efforts that improve the representation of other physical processes including 54 
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atmospheric dynamics, as well as by increases in model resolution. 55 

Given this effort, it is important to ask: are climate model simulations of clouds 56 

improving and, if so, by how much? Here, we analyze the ability of two generations of 57 

climate models to simulate the climatological distribution of clouds and judge fidelity by 58 

comparison to several decade’s worth of satellite observations. Because of the significant 59 

differences between the ways clouds are observed and the ways they are represented in 60 

models, we use a “satellite simulator” to increase the chances that differences between 61 

the models and observations represent actual model deficiencies. We find that significant 62 

progress in the ability of models to simulate clouds has occurred over the last decade, 63 

particularly in reducing the over-prediction of highly reflective clouds [Zhang et al., 64 

2005]. 65 

2. Climate Models, Satellite Observations, ISCCP Simulator and Analysis Methods 66 

2.1 Climate Models 67 

The models we analyze are those that submitted output to the first two phases of the 68 

Cloud Feedback Model Intercomparison Project [McAvaney and LeTreut, 2003; Bony et 69 

al., 2011].  Submissions to the first phase (CFMIP1) were completed by the end of 2005 70 

and thus the nine models (Table 1) we analyze were all formulated prior to that time, with 71 

HadSM3 being perhaps the oldest of these models. Submissions to the second phase 72 
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(CFMIP2) began in late 2011 and as of the time of this writing1 we have output from 73 

eight models (Table 2).  CFMIP2 is a subset of the much wider fifth Coupled Model 74 

Intercomparison Project (CMIP5) [Taylor et al., 2012] associated with the fifth 75 

assessment report of the Intergovernmental Panel on Climate Change. Although less 76 

formal, there was also a close connection between CFMIP1 and the corresponding third 77 

Coupled Model Intercomparison Project (CMIP3) [Meehl et al., 2007]. As some models 78 

that participated in CFMIP1 did not participate in CMIP3, we retain the more accurate 79 

label of CFMIP (instead of CMIP) when referring to the ensembles. 80 

A direct evaluation of model changes is complicated by the fact that the CFMIP1 output 81 

used here is from the control climate integrations of slab-ocean models (i.e., atmospheric 82 

models coupled with a mixed-layer model of the upper ocean), while the CFMIP2 output 83 

is from simulations of the atmosphere model with sea surface temperatures and sea-ice 84 

distributions prescribed from observations from recent decades (i.e. Atmospheric Model 85 

Intercomparison Project (AMIP) simulations [Gates et al., 1999]). This difference arises 86 

because the satellite simulator output we require is only available from the slab-ocean 87 

models of CFMIP1, while the slab-ocean model framework is not part of CFMIP2. 88 

Nonetheless, we believe that the difference in modeling framework has only a minor 89 

impact, because the differences in surface boundary conditions between slab-ocean 90 

                                                

1 We intend to add other CFMIP2 models to our analysis should they become available during the review 

process. We think it is possible to add results from the GFDL AM3 and EC-Earth models. 
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models and AMIP integrations (and hence the resulting distribution of clouds) are 91 

small, even for slab-ocean models constructed to mimic the climate of the pre-industrial 92 

era. We have tested this notion by comparing AMIP and slab-ocean model simulations 93 

for one model (CAM4), and find that differences in our results resulting from the 94 

different modeling frameworks to be much smaller than differences among CFMIP 95 

models.  96 

2.2 Satellite Observations  97 

We compare the clouds simulated by climate models to the cloud climatology of 98 

observations created by the International Satellite Cloud Climatology Project (ISCCP) 99 

[Rossow and Schiffer, 1991, 1999]. ISCCP provides estimates of the area coverage of 100 

clouds stratified by ctp, the apparent cloud-top pressure of the highest cloud in a column, 101 

and by τ, the column integrated optical thickness of clouds. These estimates are the 102 

results of retrieval algorithms applied to radiance observations from the visible and 103 

infrared window channels of geostationary and polar orbiting satellites. They are 104 

accumulated for 280 km x 280 km regions every 3 hours staring in July 1983 and we use 105 

data through June 2008. Area coverage estimates are summarized in a joint histogram 106 

with 6 bins in τ and 7 bins in ctp; bin boundaries are shown in Figure 7. We use custom-107 

built daytime-only monthly averages that are described more fully in Pincus et al. [2012] 108 

and are available from http://climserv.ipsl.polytechnique.fr/. 109 

As a point of comparison, we also use 110 roughly analogous observations from the 
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MOderate Resolution Imaging Spectrometer (MODIS) instruments for the period 111 

March 2000 through April 2011 [Pincus et al., 2012].  MODIS uses substantially 112 

different methods of estimating ctp than does ISCCP, so the amounts of clouds in each 113 

bin of the joint histogram of ctp and τ from MODIS are not comparable to those observed 114 

by ISCCP or the output of an ISCCP simulator applied to climate models. (MODIS 115 

observations may be compared to the output of a MODIS simulator [Pincus et al., 2012], 116 

but that was not available at the time of CFMIP1.) On the other hand, MODIS retrievals 117 

of τ are roughly equivalent to those from ISCCP, so we compare MODIS observations, 118 

aggregated over bins of ctp, to both ISCCP observations and the output of ISCCP 119 

simulators. 120 

2.3 ISCCP Simulator 121 

A satellite simulator is a diagnostic code applied to model variables that reduces the 122 

influences of inconsistencies between the ways clouds are observed and the ways they are 123 

modeled [Bodas-Salcedo et al., 2011]. By mimicking the observational process in a 124 

simplified way, the simulator attempts to compute what a satellite would retrieve if the 125 

real-word atmosphere had the clouds of the model. Simulators increase the chances that 126 

the comparison of satellite retrievals to model output after run through a simulator is an 127 

evaluation of the fidelity of a model’s simulation rather than a reflection of observational 128 

limitations or artifacts. The use of a satellite simulator also puts model intercomparison 129 

on a firmer basis by minimizing the impacts of how clouds are defined in different 130 



 

 

 

8 

parameterizations.  131 

The ISCCP simulator is the oldest of the satellite simulators used to evaluate clouds in 132 

models and has been widely used by most major climate modeling centers since its 133 

creation over ten years ago [Klein and Jakob, 1999; Webb et al., 2001]. The ISCCP 134 

simulator mimics the key aspect of the ISCCP retrieval algorithms that radiances in every 135 

cloudy satellite pixel are assumed to arise from a single homogenous layer of cloud with 136 

ctp determined from an infrared brightness temperature. In detail, the ISCCP simulator 137 

takes a model’s vertical profile of grid-box mean clouds and creates a set of sub-grid 138 

scale columns which are completely clear or cloudy at each level and which are 139 

consistent with the model’s cloud-overlap parameterization. (This step is bypassed for 140 

models that provide to the simulator a set of previously generated sub-grid scale 141 

columns.) From every sub-grid scale column, one determines the single value of ctp and 142 

column-integrated τ that would be consistent with the single-layer cloud retrieval that 143 

ISCCP applies to every cloudy satellite pixel. In this step, ctp is determined by applying a 144 

simplified radiative transfer model in each sub-grid scale column to determine an infrared 145 

brightness temperature, which is then converted to the temperature at cloud-top by using 146 

a cloud longwave emissivity derived from τ, as in the ISCCP retrieval algorithm. Once a 147 

cloud-top temperature has been determined, ctp is equated with the interpolated pressure 148 

that has the identical temperature according to the model’s profile of temperature. The 149 

column-integrated value of τ is equated with the sum of model-reported τ from all model 150 

layers that are cloudy in a given sub-grid scale column. From these sub-grid scale values 151 
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of ctp and τ, the grid-box mean joint histogram of ctp and τ is formed for every grid 152 

box and then subsequently averaged over time. To make the comparison with satellite 153 

retrievals of τ more fair, the ISCCP simulator is only applied to grid-boxes that are sunlit 154 

at a given model time. 155 

The ISCCP simulator itself changed between CFMIP1, which used v3.5, and CFMIP2, 156 

which used v4.1, raising the possibility that differences in the diagnostics might be 157 

mistaken for changes in simulation quality. The most significant algorithmic difference 158 

between these two versions involves the determination of ctp for clouds under 159 

atmospheric temperature inversions, such as subtropical marine stratocumulus. In these 160 

situations, ISCCP often erroneously assigns ctp to a level far higher (100 – 300 hPa) in 161 

the atmosphere than it should be [Garay et al., 2008]. In CFMIP1, ctp is assigned to the 162 

highest interpolated pressure (lowest altitude) with matching cloud-top temperature, but, 163 

since the simulator is intended to mimic the retrieval process (even when it is faulty), the 164 

simulator was changed so that ctp is assigned to the lowest interpolated pressure (highest 165 

altitude) with matching cloud-top temperature when a temperature inversion is present in 166 

the model. We have verified that the impact of this and other simulator differences have 167 

little impact on our results by comparing the output of these two versions of the ISCCP 168 

simulator when applied to identical integrations of two CFMIP2 models (CAM4 and 169 

HadGEM2) (not shown). Simulator changes primarily affect ctp with differences of up to 170 

0.01 in the amounts of clouds annually averaged over the domain 60°N-60°S for ctp bins 171 

where ctp < 680 hPa, and somewhat larger differences of up to 0.04 for ctp bins where 172 
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ctp > 680 hPa. 173 

We only use models for which we are reasonably confident of a correct implementation 174 

of the ISCCP simulator. Our primary test is to verify that the sum of cloud cover over all 175 

bins of the joint histogram is consistent with the model diagnostic of total cloud cover 176 

(‘clt’) which a model computes without using the ISCCP simulator [Zelinka et al., 2012]. 177 

2.4 Analysis Methods 178 

Climatological joint histograms of ctp and τ are formed for every calendar month by 179 

averaging model and observational data on a common 2° latitude by 2.5° longitude grid 180 

from every available year. Most model climatologies are based upon either 20 or 30 181 

simulated years whereas the observed climatologies are for 25 years for ISCCP and 11 182 

years for MODIS, but differences in the number of years available do not materially 183 

affect our evaluation [Pincus et al., 2008]. (The scalar measures of the fidelity of model 184 

simulations [Section 4] are sensitive to this issue if the number of years used to form a 185 

climatology is very low (< 5); this only affects results for the two MIROC models in 186 

CFMIP1.) To minimize issues with cloud retrievals above surfaces with snow or ice, we 187 

restrict our analysis to the domain 60°N-60°S. 188 

We evaluate changes over time in two ways. One considers changes in the multi-model 189 

mean from each of the CFMIP ensembles. This has the advantage of considering all 190 

available models and of highlighting 191 common model errors. However, multi-
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model means are sensitive to the addition of new models (especially given the small 192 

sizes of the model ensembles) and changes in the multi-model mean may not reveal 193 

individual model error reductions when the spread of model results is centered on the 194 

observed value, as is often the case [Gleckler et al., 2008]. To address these limitations, 195 

we also track the changes over time in the models from the four modeling centers that 196 

have contributed one or more models to both ensembles. For this analysis, we use models 197 

from the Canadian Centre for Climate Modeling and Analysis (AGCM4.0 to CanAM4), 198 

the United Kingdom’s Met Office Hadley Centre (HadSM3 to HadSM4 to HadGEM1 to 199 

HadGEM2), the Japanese climate model effort associated with MIROC (MIROC(hisens) 200 

and MIROC(losens) to MIROC5), and the United States climate modeling effort 201 

associated with the Community Atmosphere Model (CCSM3.0 to CAM4 to CAM5). 202 

3. Comparisons of climate model simulations of clouds to satellite observations 203 

3.1 Common improvements and failures in the simulation of total cloud amount 204 

We begin our analysis by examining the ability of models to simulate the space-time 205 

distribution of total cloud amount, i.e., how often a cloud occurs with any value of ctp 206 

and τ, which is perhaps the most fundamental aspect of a model’s ability to simulate 207 

clouds.  Unfortunately, this quantity is problematic to define from observations: satellite 208 

estimates of total cloud amount are extremely sensitive to many observational factors 209 

including the scale and sensitivity of the fundamental observations, as well as decisions 210 

made during the aggregation to larger 211 scales [Stubenrauch et al., 2009; Mace et 
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al., 2009; Marchand et al., 2010; Pincus et al., 2012]. We make the comparison more 212 

robust by restricting the analysis to clouds with τ exceeding some minimum threshold 213 

τmin, which we set to minimize hard-to-detect and partly-cloudy observations. We select 214 

τmin = 1.3 from among the discrete choices offered by the bin boundaries of the joint 215 

histogram of ctp and τ by balancing the following desires: (a) to maximize the number of 216 

clouds that we examine, (b) so that the observational datasets we use agree among 217 

themselves, ensuring robust model evaluation, and (c) to minimize the chances that an 218 

observational platform would have missed a cloud with τ > τmin. Setting τmin = 1.3 219 

provides the smallest relative bias and relative root-mean-square difference, as well as the 220 

maximum correlation coefficient, between the space-time distributions of the annual 221 

cycle climatologies of ISCCP and MODIS. 222 

Figure 1 illustrates the annual mean total cloud amount for the multi-model means of the 223 

CFMIP1 and CFMIP2 ensembles, the ISCCP and MODIS observations, and the 224 

difference of the CFMIP2 multi-model mean with ISCCP observations and with the 225 

CFMIP1 multi-model mean. For the domain 60°N-60°S, the annual mean total cloud 226 

amount fraction with a τmin of 1.3 from ISCCP and MODIS is 0.51 and 0.47, respectively. 227 

The multi-model means of both CFMIP1 and CFMIP2 are 0.43 with more than ¾ of 228 

models in both ensembles below the range of observational estimates. Although the 229 

multi-model mean is identical between the two ensembles, if one examines these area-230 

averaged values for the four model families in which we can track progress, in every case 231 

the most recent model is closer to the observational estimates. The increase is quite 232 
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striking for the Hadley Centre models, with HadSM3 having a total cloud amount of 233 

0.33 but HadGEM2 having a total cloud amount of 0.43. 234 

Relative to ISCCP observations, model underestimates of total cloud amount 235 

preferentially occur in regions of subtropical marine stratocumulus on the eastern sides of 236 

subtropical ocean basins and over middle latitudes. In the stratocumulus regions, there is 237 

a wide variety of results in both ensembles with about 3-4 members in each ensemble 238 

having total cloud amount values close to observed and the reminder of models 239 

significantly below observational estimates. Although the differences between the multi-240 

model means of ensembles are small in these regions, one finds marked progress in 3 out 241 

of the 4 families we can track with the amount of clouds in the most recent model 242 

versions close to observed. This suggests that at least for the modeling centers for which 243 

we can track progress, the simulation of current climate amounts of subtropical 244 

stratocumulus has been improving, perhaps in response to the well-known importance of 245 

the low clouds in these regions for mean climate and climate sensitivity [Bony and 246 

duFresne, 2005]. 247 

Although not as well known, models also typically underestimate total cloud amount at 248 

middle latitudes over both land and ocean (Figure 1). While a few models are close to 249 

observed over the middle latitude oceans, all models underestimate total cloud amount 250 

over the middle latitudes of Eurasia and North America. Examination of level-by-level 251 

cloud amount indicates that these underestimates, over both land and ocean, are primarily 252 

of lower level clouds (ctp > 560 hPa) 253 although underestimates in upper level 
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clouds (ctp < 560 hPa) do contribute some to this error, depending on the model. When 254 

examining results by model families, one finds no consistent sign of progress for this bias 255 

either over ocean or land, consistent with larger middle-latitude bias in the CFMIP2 256 

multi-model mean relative to the CFMIP1 multi-model mean. 257 

3.2 Improvements as a function of cloud-top pressure and cloud optical depth 258 

In addition to getting clouds to occur in the right places and times, having a good 259 

simulation of ctp and τ is essential to getting the correct long- and shortwave impacts of a 260 

given cloud on the top-of-atmosphere radiation budget. Figure 2 illustrates the amount of 261 

clouds with τ > 1.3 as a function of ctp averaged over 60°N-60°S. Models tend to 262 

underestimate the amount of middle (440 hPa < ctp < 680 hPa) and low-level (ctp > 680 263 

hPa) clouds while having about the right amount of high-level (ctp < 440 hPa) clouds 264 

[Zhang et al., 2005]. The general underestimate of low-level clouds is consistent with the 265 

lack of clouds in marine stratocumulus and middle-latitudes mentioned above. 266 

Differences in middle-level clouds are somewhat hard to interpret as many middle-level 267 

clouds observed by ISCCP are in fact multi-layer cloud scenes of cirrus above boundary 268 

layer cloud [Marchand et al., 2010; Mace et al., 2011]. Though the ISCCP simulator is 269 

capable of reproducing this artifact [Mace et al., 2011], it will do so only if a model 270 

produces thin cirrus over boundary layer clouds. Thus, underestimates of middle-level 271 

cloud may actually indicate a lack of cirrus above boundary layer cloud. 272 

Relative to that of the CFMIP1 ensemble, 273 the CFMIP2 multi-model mean is closer to 
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the observed amounts for 6 out of 7 bins of ctp, suggesting some improvement. This 274 

improvement is noticeable in the relative amounts of low-level clouds in the two lowest 275 

ctp bins. While a large part of this improvement is due to the change in the simulator’s 276 

determination of ctp for clouds under an inversion, improvement can be found in the 277 

models from modeling centers that contribute more than one model to a given ensemble 278 

(compare HadSM3 to HadGSM1 and CAM4 to CAM5). Because the ISCCP simulator 279 

version does not change within these two pairs, we can conclude that these models have 280 

improved their simulation of low-level clouds. For middle-level clouds, there is also a 281 

reduction in the model underestimate, particularly for the 560-680 hPa ctp bin. In fact, 282 

the perfect agreement of CAM5 with ISCCP for this bin can be attributed to the fact that 283 

snow is now radiatively active and thus the simulator counts the contribution of snow to 284 

τ and the infrared-brightness temperature used to determine ctp [Kay et al., 2012]. 285 

Figure 3 illustrates the amount of clouds as a function of τ  regardless of ctp and averaged 286 

over 60°N-60°S. More so than in the case of ctp, rather marked improvement can be seen 287 

for τ bins where ISCCP and MODIS agree fairly well (τ > 3.6). In particular, the amounts 288 

of optically thick clouds (τ  > 23) are significantly closer to observed in the CFMIP2 289 

ensemble relative to the CFMIP1 ensemble with a marked reduction in the previously 290 

identified overestimate of highly reflective clouds [Zhang et al., 2005]. All but one  of the 291 

CFMIP2 models have fewer clouds in the optically thickest bin (τ > 60) than all but one 292 

of the CFMIP1 models. This bias reduction is widespread enough that it is dramatically 293 
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present for each of the 4 model families in which we can track progress (Figure 4).  294 

The fraction of the 60°N-60°S area covered by optically thick cloud is 0.175 for the 295 

CFMIP1 ensemble mean but is 0.121 for the CFMIP2 ensemble mean. The CFMIP2 296 

ensemble mean is still larger than the observational estimates of 0.064 for ISCCP and 297 

0.082 for MODIS, indicating that about half of the bias remains. For HadGEM2 and 298 

MRI-CGCM3, the amount of optically thick cloud is within the range of the two 299 

observational estimates.  The reduction between ensembles in optically thick clouds is 300 

larger for lower-level (ctp > 560 hPa) clouds than it is for upper-level (ctp < 560 hPa) 301 

clouds, 0.043 vs. 0.009 respectively. With the greater reduction in lower-level optically 302 

thick clouds, 7 out of 8 CFMIP2 models as opposed to 5 out of 9 CFMIP1 models 303 

reproduce the fact that optically thick clouds occur more frequently with ctp at upper 304 

levels than at lower levels. However, for only 2 CFMIP1 and 3 CFMIP2 models does the 305 

ratio of upper to lower-level optically thick clouds exceed the observed value of 1.7 for 306 

ISCCP (2.2 for MODIS). 307 

Geographically, one can see from the multi-model means that the significant reductions 308 

in the amount of optically thick clouds occur over both the subtropical stratocumulus 309 

regions and middle-latitude land and especially ocean (Figure 5). There is no 310 

improvement in the multi-model mean overestimate of optically thick clouds over 311 

tropical continents, and this bias is present in 7 out of 9 CFMIP1 models and 7 out of 8 312 

CFMIP2 models. We suspect that the common model bias in the diurnal cycle 313 

precipitation over tropical land [Yang and 314 Slingo, 2001; Dai, 2006] contributes to this 
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error by producing too many optically thick anvil clouds near mid-day, when they are 315 

visible to the ISCCP simulator, rather than at night. 316 

The decrease in optically thick clouds has been accompanied by an increase in the 317 

amount of clouds with intermediate optical depths (3.6 < τ < 23) (Figures 3 and 6). This 318 

increase is present in each of the 4 model families for which we can track progress, with 319 

one 1 CFMIP model (IPSL-CM4) and 3 CFMIP2 models (CAM5, HadGEM2, MPI-320 

ESM-LR) having the amount of intermediate optical depth clouds lying in between the 321 

values from ISCCP and MODIS.  322 

Passive observational estimates of the amount of cloud with 0.3 < τ < 3.6 disagree 323 

sharply, in part because many of the observations which produce clouds in this optical 324 

thickness range are partly cloudy [Pincus et al., 2012]. This makes it impossible to assess 325 

the fidelity of model simulations for these clouds. For τ < 0.3, there is a wide variety of 326 

model results, particularly in CFMIP1 where the two MIROC models each have more 327 

than 0.25 of the area covered by clouds of this optical depth range. Clouds this thin have 328 

too little contrast on the top-of-atmosphere radiation budget to be detected with the 329 

passive sensors used by ISCCP and MODIS; in fact, the τ bin boundary of 0.3 is chosen 330 

to crudely mimic a sensitivity threshold for ISCCP (W. B. Rossow, personal 331 

communication). Assessment of very thin clouds requires the use of an active sensor such 332 

as CALIPSO [Winker et al., 2009]. Such an assessment would be relevant for the 333 

plentiful but very thin tropopause-level cirrus in the tropics [Mace et al., 2009; Thorsen et 334 
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al., 2011]. 335 

3.3 Radiative impact of model errors in cloud properties 336 

As in nature, clouds in climate models strongly affect the radiation balance as a function 337 

of space and time. Model tuning guarantees that the global and annual average of the net 338 

radiation is close to zero, but significant regional errors in the radiation field may persist, 339 

and correct regional fluxes can be achieved through compensating errors in cloud 340 

properties. One common error is to have clouds which are too few but too bright, that is, 341 

to have lower-than-observed cloud amounts with larger-than-observed values of τ, such 342 

that the average shortwave radiation budget is about right [Zhang et al., 2005].  343 

We explore these issues by using cloud radiative kernels [Zelinka et al., 2012] to compute 344 

the radiative effects of errors in cloud properties. A cloud kernel KSW,LW is the result of a 345 

radiative transfer calculation that computes the impact on the top-of-atmosphere short- 346 

and long-wave fluxes, relative to clear-sky, of the addition of a unit area covered by a 347 

cloud with a given ctp and τ.  Our kernels are computed as a function of latitude, 348 

longitude and calendar month. Multiplying the kernels by the bias, relative to ISCCP, in 349 

cloud amount in each bin of the joint histogram yields an estimate of the error in top-of-350 

atmosphere radiation budget due to errors in the simulated distribution of clouds as a 351 

function of ctp and τ.  352 

Figure 7 shows the annually and 60°N-353 60°S averaged bias relative to ISCCP in 
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cloud amount fraction in the joint histograms of ctp and τ for the four model families in 354 

which we can track progress and the multi-model means for CFMIP1 and CFMIP2. 355 

Figure 8 and 9 show the corresponding biases in W m-2 for the short- and long-wave 356 

radiation of the same models. (The Canadian model pairing is absent from Figures 8-9 357 

because we cannot perform accurate cloud kernel calculations for AGCM4.0 for the 358 

reasons discussed in the Appendix of Zelinka et al. [2012].) The oldest models are in the 359 

left column and the most recent models on the right. The prominent overestimate of 360 

optically thick clouds occurs in nearly all ctp bins in the earlier models, but is much 361 

reduced in the more recent set.  Likewise the underestimate of optically thin (0.3 < τ < 362 

3.6) and intermediate clouds present in nearly all ctp bins has been reduced in the more 363 

recent model versions. As discussed above, whether or not the biases in thin clouds are 364 

real is unclear. 365 

The radiative impact of these biases on the short-wave spectrum quantifies the nature of 366 

compensating errors (Figure 8), with the overestimates of reflected shortwave by clouds 367 

with τ > 23 compensating for a lack of reflection by clouds with thin and intermediate 368 

optical depths. The figure is similar to that of the cloud biases (Figure 7) except that 369 

weighting by the shortwave radiative kernel reduces the impact of the underestimate of 370 

optically thin clouds relative to the overestimate of optically thick clouds. The degree of 371 

compensation is markedly reduced in the more recent models. For example, in HadSM3 372 

there was 27 W m-2 too much reflectence by clouds with τ > 60, whereas in the most 373 

recent model HadGEM2-A, the bias is less than 1 W m-2. Similarly, for HadSM3, 374 
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CCSM3.0 and MIROC (hisens) and MIROC (losens), there was an underestimate of 375 

reflected shortwave radiation by clouds with 3.6 < τ < 9.4 of about 10 W m-2, but in 376 

CAM5, MIROC5, and HadGEM2-A this bias is less than 3 W m-2. In the multi-model 377 

mean, too much reflectance by optically thick clouds compensates for an underestimate 378 

in reflection by clouds with 1.3 < τ < 9.4 for most ctp bins, but the biases are smaller in 379 

the more recent models. 380 

In the longwave spectrum, the nature of compensating biases is similar but with emphasis 381 

on upper level clouds (Figure 9). In general, there is too much reduction of outgoing 382 

longwave radiation by high clouds with τ > 60, which compensates for a lack of 383 

reduction of outgoing longwave radiation by thinner clouds at both middle and high 384 

levels of the troposphere. The progress is clearly identifiable but not quite as prominent 385 

as in the case of shortwave radiation with noticeable progress for the Community 386 

Atmosphere and Hadley Centre models but less so for the MIROC model and the multi-387 

model means. 388 

4. Scalar measures of the fidelity of model simulations  389 

While the evidence just presented supports the notion that the simulation of clouds in 390 

climate models has been improving, it is helpful to provide scalar measures of the fidelity 391 

of model simulations that can quantitatively demonstrate progress. Here we present a few 392 

such quantities chosen to measure different aspects of cloud simulations and for which 393 
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observational uncertainty is less than the differences between models and observations 394 

and among models themselves. These measures might be considered for a list of metrics 395 

for clouds in climate models [Gleckler et al., 2008; Pincus et al., 2008; Williams and 396 

Webb, 2009], although we do not develop this aspect here. 397 

In the following, c ctp,τ ,X( )  is the amount of cloud in a given bin of the ISCCP 398 

histogram and is a function of cloud-top pressure ctp, optical depth τ, latitude, and 399 

generalized position X, including latitude, longitude, and month. Total cloud amount 400 

C(τ
min
)  is the sum of the cloud amounts of all bins with τ greater than the minimum 401 

optical thickness τmin: 402 

C(τ
min
,X) = c ctp,τ ,X( )

τ

τ>τmin

∑
ctp

∑           (1) 403 

We compute the normalized root-mean-square error Z1 in the space-time distribution of 404 

total cloud amount, as: 405 

Z1(τmin ) = CMOD (τmin,X)−C
OBS (τmin,X)"# $%

2

X
∫ σ1 .      (2) 406 

The integral in (2) denotes the area-weighted space-time average of squared differences 407 

between the model and ISCCP observations. The root-mean-square differences are 408 

normalized by the space-time standard deviation of the observed total cloud amount, 409 
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given by: 410 

    σ1 = COBS (τmin,X)−C
OBS (τmin )"# $%

2

X
∫ .     (3) 411 

As in Section 3.1, we set τmin = 1.3.  412 

Equation (1) uses the ISCCP simulator to ensure that model definitions of cloudiness are 413 

comparable with what is robustly observable but ignores the wealth of information 414 

provided by the joint histogram of ctp and τ. We evaluate the error Z2 in this more finely-415 

resolved distribution as the sum over a finite number of cloud-top pressure (Nctp) and 416 

optical thickness (Nτ) bins of squared differences between the model and ISCCP 417 

observations: 418 

Z2 =
1

Nctp ×Nτ

× cMOD ctp,τ ,X( )− cOBS ctp,τ ,X( )( )
2

τ

τ>τmin

∑
ctp
∑

X
∫ σ 2 .        (4) 419 

This measure is sensitive to differences in each bin with τ > τ
min

, and would be 420 

applicable if the ISCCP simulator were capable of reproducing every aspect of the ISCCP 421 

observational processes. But comparisons with clouds retrieved from ground-based 422 

remote sensors and passed through the ISCCP simulator [Figures 2c and 3c of Mace et 423 

al., 2011] suggest that the accuracy of ISCCP retrievals is about ±200 hPa for ctp and a 424 

factor of 3 for τ. We therefore compute Z2 from a reduced-resolution histogram with bin 425 

and in τ of 3.6 and 23. (This is equivalent boundaries in ctp of 440 hPa and 680 hPa 426 
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to the reduced-resolution joint histogram available in the monthly-averaged ISCCP data 427 

archives.) Considering the greater uncertainty of thin-cloud retrievals, we set τmin = 3.6, 428 

and calculate differences only for the 6 bins with τ > τ
min

. Z2 is normalized by σ2, the 429 

accumulated space-time standard deviation of observed cloud amounts in the reduced bin 430 

set, making Z2 the normalized root-mean-square error in the amount of low-intermediate, 431 

low-thick, medium-intermediate, medium-thick, high-intermediate, and high-thick 432 

clouds.  433 

We compute the radiately-relevant error Z3 in the distribution of clouds by using the 434 

radiative kernels to weight bin-by-bin errors by their radiative impact on top-of-435 

atmosphere radiation fluxes: 436 

Z3
SW ,LW (τmin ) =

1
Nctp ×Nτ

× KSW ,LW (ctp,τ ,X)× cMOD ctp,τ ,X( )− cOBS ctp,τ ,X( )( )#
$

%
&
2

τ

τ>τmin

∑
ctp
∑

X
∫ σ 3

SW ,LW437 

 438 

(5) 439 

Multiplication by radiative kernel is performed for each bin of the original ISCCP 440 

histogram before aggregation to the reduced bin set.  This measure Z3 has separate 441 

components for the shortwave and longwave spectrum, and is normalized by the 442 

accumulated space-time standard deviation of the radiative impacts of observed clouds 443 

from the reduced bin set. 444 
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Figure 10 shows Z1, Z2, Z3
LW, and Z3

SW for each model stratified into two rows 445 

according to the model ensemble. Arrows from earlier to later models indicate the change 446 

with time in the fidelity of model simulations; left-pointing arrows indicate smaller errors 447 

over time. The arrows connect the earliest and latest models from the modeling centers 448 

for which we track progress as well as the mean measure of each model ensemble. (In 449 

order to identify progress over time, the mean only includes the earliest CFMIP1 (latest 450 

CFMIP2) models from modeling centers that contribute more than one model to a given 451 

ensemble.)  452 

For the total cloud amount measure Z1, values range from 0.65 to 1.18 indicating that the 453 

standard deviation of biases in total cloud amount relative to ISCCP are generally 454 

comparable in size to the space-time of standard deviation of observed total cloud 455 

amount. To put this number into context, the Z1 measure between the MODIS and ISCCP 456 

climatologies is 0.47. All model differences with ISCCP exceed this value, so it is likely 457 

that errors in the climatology of total cloud amount are robustly determined. Consistent 458 

with Figure 1, there is not a clear sign of improvement when considering the ensemble as 459 

a whole with the CFMIP1 ensemble mean value of Z1 equal to 0.86 and the CFMIP2 460 

ensemble mean value of Z1 equal to 0.82. However, improvement is found for the Hadley 461 

Centre and Community Atmosphere models with a reduction of Z1 from 1.12 for 462 

HadSM3 to 0.70 for HadGEM2A and a reduction of Z1 from 0.94 for CCSM3.0 to 0.65 463 

for CAM5, with little change in Z1 for the Canadian and MIROC models or the ensemble 464 

mean. 465 
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For the cloud property measure Z2, much more dramatic progress can be found. For 466 

three of the 4 models in which we can track progress (Hadley Centre, Community 467 

Atmosphere, and Canadian Centre models), errors relative to ISCCP has been reduced by 468 

40-45% (relative), from 150-175% to 80-105% of the standard deviation of the ISCCP 469 

amounts of the 6 intermediate and thick cloud types. For the ensemble mean measure, 470 

more moderate progress can be found with 15-30% (relative) reduction in Z2. Separate 471 

calculations reveal that the majority of the improvement in Z2 comes from a better 472 

simulation of the amounts of optically intermediate (3.6 < τ < 23) and thick (τ > 23) 473 

clouds, than it does for improvements in the high, middle, and low amounts of clouds 474 

(with τ > 3.6) (figures not shown). For the equivalent error measure calculated using only 475 

two bins for optically intermediate and thick clouds regardless of ctp, the value for the 476 

best model HadGEM2A is close to that calculated for differences between the observed 477 

ISCCP and MODIS distributions (0.70 vs. 0.59). 478 

Radiatively-relevant cloud property measures Z3
SW and Z3

LW are shown in the bottom row 479 

of Figure 10. Similar to the cloud property measure Z2, both measures show significant 480 

error reductions of 20-30% for the ensemble mean measure with larger 40-50% error 481 

reductions for individual models such as those of the Hadley Centre and Community 482 

Atmosphere. Again, the majority of this error reduction comes from improvement in the 483 

simulation of τ, indicating that models are better simulating the amount of shortwave 484 

radiation reflected and longwave radiation trapped by optically intermediate and thick 485 

clouds. Though it may appear that there is a redundancy among Z2, Z3
SW and Z3

LW, only 486 
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Z2 and Z3
SW are highly correlated; all other possible pairings, including those with Z1, 487 

have statistically insignificant inter-model correlations. 488 

5. Why are simulations of clouds improving, and what impacts might this have? 489 

The agreement between satellite observations and simulations by climate models of the 490 

climatological annual cycle of cloud amount, cloud-top pressure, and optical thickness 491 

has improved over the last decade. The improvement is most striking in the simulation of 492 

τ, where a bias of having too many optically thick clouds (τ > 23) has been reduced by 493 

about 50% in the multi-model mean, with the best models having eliminated this bias. 494 

With a corresponding increase in the simulated amount of clouds with intermediate 495 

optical depth (3.6 < τ < 23), this reduces the tendency for climate models to simulate 496 

approximately the right amount of shortwave radiation reflected by clouds but with the 497 

compensating errors of having too few clouds that are too bright. 498 

Improvement in the amount or height distribution of clouds is not clear in the ensemble 499 

as a whole although progress can be found in individual models. For example, the 500 

simulations of total cloud amount in the Hadley Centre and Community Atmosphere 501 

models do show noticeable improvement (see Z1 of Figure 10); in part, this improvement 502 

results from better simulations of the amount of clouds in the climatically important 503 

subtropical marine stratocumulus regions, where the amount of cloud is close to that 504 

observed in their most recent models. Some things show no improvement in the majority 505 

of climate models such as the underestimate of cloud over middle-latitudes, particularly 506 
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over land, and an overestimate in the amount of optically thick cloud over tropical land.  507 

Pinpointing the reasons for model improvement is difficult without testing of individual 508 

modifications from among the myriad of changes that modeling centers have 509 

implemented in the last decade, and it is likely that many factors have contributed. Even 510 

apart from parameterization changes, the incorporation of ISCCP simulator diagnostics in 511 

the routine evaluation of developmental model versions (as was done at the Hadley 512 

Centre for much of the last decade [Martin et al., 2006]) can have a subtle but persistent 513 

influence on the choices made in the model-development process in such as way as to 514 

lead to improved simulation of clouds. 515 

With regard to parameterizations, the improved boundary layer turbulence and shallow 516 

convection parameterizations in the Hadley Centre and Community Atmosphere models 517 

[Lock et al., 2000; Bretherton and Park, 2009; Park and Bretherton, 2009] are almost 518 

certainly responsible for the improved simulations in marine stratocumulus clouds. 519 

However, in the case of the improved optical depth distribution, the causes of 520 

improvement are less clear but there are some clues from what has happened at the 521 

individual modeling centers whose progress we can track.  522 

Beginning with the Canadian model, the reduction in the amount of optically thick cloud 523 

between its two versions is striking given the relatively few changes between model 524 

versions (J. Cole, personal communication). The likeliest cause is thought to be the 525 

introduction into CanAM4 of a new 526 treatment of sub-grid scale variability in 
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cloud optical properties known as the Monte Carlo Independent Column 527 

Approximation (McICA) [Pincus et al., 2003]. The improvement treatment of cloud 528 

overlap and sub-grid scale heterogeneity in τ, with a retuning of the model, is apparently 529 

responsible for the reduction in optically thick cloud.  In this example, an improved 530 

treatment of the radiative impact of clouds permitted better clouds properties to be 531 

simulated in a model that must match the observed radiation budget. A sensitivity study 532 

using McICA in the GFDL model [see Figure 4 of Zhang et al., 2005] also shows a 533 

noticeable reduction in the amount of optically thick cloud. 534 

In the Hadley Centre models, McICA is not used so other explanations must be sought. 535 

The largest reduction in optically thick cloud happened between HadSM3 and HadSM4, 536 

with a smaller but still sizeable reduction between HadSM4 and HadGSM1. Between 537 

HadSM3 and HadSM4, boundary layer vertical resolution was increased, the Lock et al. 538 

[2000] boundary layer turbulence parameterization was introduced, as was a sub-grid (in 539 

the vertical) treatment of cloud fraction. The possibility for clouds to occur in thinner 540 

layers admits the possibility of lower optical depths in stratiform clouds to be simulated 541 

(at fixed water content) (M. Webb, personal communication). The vertical resolution of 542 

climate models is known to be too coarse to simulate the many stratiform clouds that 543 

have geometrical cloud thicknesses smaller than that typical of model layers. 544 

Additionally, HadSM4 introduced an improved treatment of mixed-phase cloud 545 

microphysics [Wilson and Ballard, 1999] which also may be a factor in the reductions of 546 

optically thick cloud, particularly at middle-latitudes where a treatment of the Bergeron 547 
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process may reduce the amount of super-cooled liquid in deep frontal clouds.  548 

In the Community Atmosphere models, the vertical resolution in the boundary layer was 549 

increased and every physical parameterization, except that of deep convection, was 550 

changed between CAM4 and CAM5. Thus, all of the explanations above may be playing 551 

a role in their reduction of optically thick cloud [Neale et al., 2011]. In particular, the 552 

introduction of improved cloud microphysics led to a substantial reduction in liquid water 553 

path over middle-latitudes that probably contributes to the reduction of optically thick 554 

clouds [Gettelman et al., 2008]. 555 

Our evaluation is necessarily incomplete. For example, it is of interest to evaluate other 556 

cloud properties, such as liquid and ice water paths, or modes of variability, or how 557 

clouds co-vary with environmental parameters including 500 hPa vertical velocity and 558 

lower tropospheric stability. Because our analysis requires the use of an ISCCP simulator, 559 

our study is limited in the number of models that we can examine, although most major 560 

climate models have been included in this study. Evaluation of the limited and less 561 

consistently determined cloud information collected from a wider set of climate models is 562 

also of interest [Jiang et al., 2012]. 563 

One may wonder if there is any connection between improved cloud simulations in 564 

climate models and the response to greenhouse gases in the climate changes these model 565 

simulate. Previous investigations have found no significant relationship between climate 566 

sensitivity and the fidelity of a model 567 simulation in simulating present-day 
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climate of clouds and precipitation [Pincus et al., 2008]. We note that range of climate 568 

sensitivity in CMIP5 models is just as wide as it was in CMIP3 [Andrews et al., 2012], 569 

again with the diversity in cloud feedbacks being a leading cause of inter-model spread. 570 

This suggests that there is no connection between the global mean cloud feedback and the 571 

fidelity with which a model simulates the clouds of the present-day climate. One 572 

implication of the reduction of cloud optical depths is that the magnitude of cloud 573 

feedbacks resulting from optical depth changes can be substantially larger if the current 574 

climate’s cloud albedo is not saturated [Stephens 2010]. 575 
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Tables 741 

Table 1. CFMIP 1 slab ocean models used in this study. 742 

Model 
Name 

Modeling Center Reference Number 
of Years 
in Run 

Symbol 

AGCM4.0 Canadian Centre for 
Climate Modeling and 
Analysis 

http://www.ec.gc.ca/ccmac-
cccma/ 

20 c4 

CCSM3.0 National Center for 
Atmospheric Research 

Collins et al. [2004] 20 n3 

GFDL 
MLM 2.1 

NOAA / Geophysical 
Fluid Dynamics 
Laboratory 

GFDL GAMDT [2004] 20 g 

HadGSM1 Met Office Hadley 
Centre 

Martin et al. [2006] 20 h1 

HadSM3 Met Office Hadley 
Centre 

Pope et al. [2000] 20 h3 

HadSM4 Met Office Hadley 
Centre  

Webb et al. [2001] 20 h4 

IPSL CM4 Institut Pierre Simon 
Laplace 

Hourdin et al. [2006] 20 i 

MIROC 
(hisens) 

Center for Climate 
System Research (The 
University of Tokyo), 
National Institute for 
Environmental 
Studies, and Frontier 
Research Center for 
Global Change 

Ogura et al. [2008] 5 m3 

MIROC 
(losens) 

Center for Climate 
System Research (The 
University of Tokyo), 
National Institute for 
Environmental 
Studies, and Frontier 
Research Center for 
Global Change 

Ogura et al. [2008] 5 m4 

743 
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Table 2. CFMIP 2 AMIP models used in this study. 744 

Model 
Name 

Modeling Center Reference Number 
of Years 
in Run 

Symbol 

CAM4 Community Earth System 
Model Contributors (NSF-
DOE-NCAR) 

Gent et al. [2004] 10 N4 

CAM5 Community Earth System 
Model Contributors (NSF-
DOE-NCAR) 

Neale et al. [2011] 10 N5 

CanAM4 Canadian Centre for 
Climate Modeling and 
Analysis 

http://www.ec.gc.ca/ccmac-
cccma/ 

60 C4 

CNRM-
CM5 

Centre National de 
Recherches 
Meteorologiques / 
Centre Europeen de 
Recherche et Formation 
Avancees en Calcul 
Scientifique 

Voldoire et al. [2012] 30 Q 

HadGEM2A Hadley Centre for Climate 
Prediction and 
Research/Met Office 

Collins et al. [2008] 30 H2 

MIROC5 Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), 
National Institute for 
Environmental Studies, and 
Japan Agency for 
Marine-Earth Science and 
Technology 

Watanabe et al. [2010] 30 M5 

MPI-ESM-
LR 

Max Planck Institute for 
Meteorology 

Raddatz et al. [2007] 30 P 

MRI-
CGCM3 

Meteorological Research 
Institute 

Yukimoto et al. [2011] 30 R 

745 
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Figures 746 

 747 

Figure 1. Total cloud amount (τ > 1.3) from CFMIP1 and CFMIP2 multi-model means, 748 
ISCCP and MODIS observations, and the difference of CFMIP2 multi-model mean to the 749 
ISCCP and CFMIP1 multi-model mean. 750 

 751 

752 
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 753 

Figure 2. Fractional area in the domain 60ºS - 60ºN covered by clouds as a function of 754 
cloud-top pressure from models and ISCCP observations. CFMIP1 (2) ensemble means 755 
are plotted with a dotted (dashed) line. The area is computed only for clouds with τ > 1.3. 756 
The symbol key for models is provided in Tables 1 and 2. 757 

758 
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 759 

Figure 3. Fractional area in the domain 60ºS - 60ºN covered by clouds as a function of 760 
optical thickness from models and ISCCP and MODIS observations. 761 

762 
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 763 

Figure 4. Fractional area in the domain 60ºS - 60ºN covered by clouds with τ > 23 for 764 
selected model families and observations. Models are plotted so as to illustrate progress 765 
in reducing the overestimate of optically thick cloud over time by ordering models from 766 
earliest to latest (left to right) within families. 767 

768 



 

 

 

47 

 769 

Figure 5. Fractional area covered by optically thick clouds (τ > 23) from CFMIP1 and 770 
CFMIP2 multi-model means, ISCCP and MODIS observations, and the difference of the 771 
CFMIP2 multi-model mean to ISCCP and the CFMIP1 multi-model mean. 772 

773 
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 774 

Figure 6. Scatterplot of the fractional area in the domain 60ºS - 60ºN covered by clouds 775 
with τ > 23 and clouds with 3.6 < τ < 23. Observations from MODIS and ISCCP are 776 
represented by “M” and “I”, respectively. The symbol key for models is provided in 777 
Tables 1 and 2. 778 

779 
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 780 

Figure 7. Area-averaged biases in the domain 60ºS - 60ºN with respect to ISCCP observations of fractional area 781 
covered by clouds in bins of cloud-top pressure and optical depth. Results are plotted for the 4 model families in 782 
which we track progress and the ensemble mean. Models are ordered with the oldest models on the left and the 783 
newest models on the right. The sum of the histogram and the range (maximum minus minimum value in the 784 
histogram) are shown in the title of each panel.  Positive values indicate model overestimates relative to 785 
observations. The fact that the recent models have fewer bins with color as well as reduced intensity in the bins 786 
with color indicates improvements with time.787 
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 788 

Figure 8. As in Figure 7, but for the contributions to shortwave radiation reflected to 789 
space by clouds stratified into bins of cloud-top pressure and optical depth. Positive 790 
values indicate a bias towards too much reflected radiation due to a positive bias in cloud 791 
amount. 792 
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 794 

Figure 9. As in Figure 7, but for the contributions to reductions of outgoing longwave 795 
radiation (relative to clear-sky) by clouds stratified into bins of cloud-top pressure and 796 
optical depth. Positive values indicate a bias towards too much longwave radiation 797 
emitted to space due to a negative bias in cloud amount. 798 
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Figure 10. Scalar measures of fidelity of CFMIP model simulations in reproducing the 801 
space-time distribution of several cloud measures, with greater fidelity indicated by lower 802 
Z values. Z1 measures fidelity in simulating total cloud amount, whereas Z2 measures 803 
fidelity in simulating cloud-top pressure and optical depth in different categories of 804 
optically intermediate and thick clouds at high, middle, and low-levels of the atmosphere. 805 
Z3 measures the impacts on top-of-atmosphere shortwave (lower left) and longwave 806 
(lower right) radiation in the same categories measured by Z2. Models are stratified 807 
vertically into the two ensembles and are plotted according to the symbol key in Tables 1 808 
and 2. For the modeling centers in which we can track progress, the arrow connects the 809 
oldest model in the family (arrow base) to the most recent model (arrow tip). The thick 810 
black arrow connects the average measure of CFMIP1 models (arrow base) to that of 811 
CFMIP2 models (arrow tip). Arrows pointing to the left indicate improvements with 812 
time.  813 


